Exploiting Generative Models in Discriminative Classifiers

نویسندگان

  • Tommi S. Jaakkola
  • David Haussler
چکیده

„ Generative probability models deal with missing information and variable length sequences.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploiting generative models discriminative classifiers • In

Generative probability models such as hidden ~larkov models provide a principled way of treating missing information and dealing with variable length sequences. On the other hand , discriminative methods such as support vector machines enable us to construct flexible decision boundaries and often result in classification performance superior to that of the model based approaches. An ideal class...

متن کامل

A Logic-based Approach to Generatively Defined Discriminative Modeling

Conditional random fields (CRFs) are usually specified by graphical models but in this paper we propose to use probabilistic logic programs and specify them generatively. Our intension is first to provide a unified approach to CRFs for complex modeling through the use of a Turing complete language and second to offer a convenient way of realizing generative-discriminative pairs in machine learn...

متن کامل

Augmented Statistical Models: Exploiting Generative Models in Discriminative Classifiers

In recent years, many algorithms have been proposed for discriminative classification of data. Popular examples are support vector machines (SVMs) [1] and conditional random fields (CRFs) [2]. These techniques make extensive use of fixed-dimensional mappings from the observation-space to a (often high-dimensional) feature-space. Unfortunately, for applications with variable-length sequences of ...

متن کامل

Are Generative Classifiers More Robust to Adversarial Attacks?

There is a rising interest in studying the robustness of deep neural network classifiers against adversaries, with both advanced attack and defence techniques being actively developed. However, most recent work focuses on discriminative classifiers which only models the conditional distribution of the labels given the inputs. In this abstract we propose deep Bayes classifier that improves the c...

متن کامل

Exploiting Unlabelled Data for Hybrid Object Classification

We propose a semi-supervised learning algorithm for visual object categorization which utilizes statistical information from unlabelled data to increase classification performance. We build on an earlier hybrid generative-discriminative approach by Holub et al. [6] which extracts Fisher scores from generative models. The hybrid model allows us to combine the modelling power and flexibility of g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998